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Analytic expression for the short-time rate of growth of the intermaterial contact perimeter
in two-dimensional chaotic flows and Hamiltonian systems
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This article derives an analytic expression for the short- or intermediate-time behavior of the moment
hierarchy of finite-time Liapunov exponents~stretching exponents! for two-dimensional periodically forced
Hamiltonian systems and incompressible time-periodic fluid flows. As a result, the exponent characterizing the
apparent short-time exponential growth of the intermaterial contact perimeter for two-dimensional systems can
be predicted from the statistical properties of the invariant stretching distribution. The analysis as a whole is in
fact grounded on an analytic expression for the high stretching tail of the invariant distribution of the finite-
time Liapunov exponents. The asymptotic behavior of the moment hierarchy of the stretching field is also
addressed in order to highlight the role of the dynamic heterogeneity accounted for by the variance of the
stretching exponents.@S1063-651X~98!02807-4#

PACS number~s!: 47.52.1j, 05.45.1b, 05.90.1m
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I. INTRODUCTION

Recent articles@1–3# focusing on the evolution of the
spatial structures generated by advection in chaotic flo
have shown that the formation of partially mixed structu
in time-periodic flows depends on two main interrelated f
tors: ~1! the global increase of the intermaterial contact a
~and the corresponding decrease of the characteristic le
scale between material elements, referred to as striation
short!, and~2! the degree of heterogeneity in the spatial d
tribution of the intermaterial contact area.

Despite the intense investigation of chaotic flows over
last decade, oriented mainly towards the characterizatio
stretching statistics@4–6# and the qualitative description o
the role of the unstable manifold in the formation of coher
structures@7,8#, a quantitative theory has yet to be develop
for the time evolution of the intermaterial contact area a
the spatial distribution of partially mixed structures.

Contrary to the general belief that the fundamental ex
nent controlling the temporal behavior of dynamic quantit
in mixing systems~such as the intermaterial contact area
the average characteristic length scale between striation! is
the Liapunov exponent@4#, Alvarez et al. @3# have recently
shown by means of numerical simulations on a tw
dimensional area-preserving and differentiable model sys
that the intermaterial contact area~or more precisely the in-
termaterial contact perimeter, sinced52) scales exponen
tially with the number of flow periodsn ~henceforth referred
to as iterations!, but with an exponentu which is unambigu-
ously different from and greater than the Liapunov expon
L. A short-time exponential growth faster than exp(Ln), as
predicted by the asymptotic Liapunov scaling, has also b

*Permanent address: Dipartimento di Ingegneria Chimica Uni
sità di Cagliari, piazza d’Armi, 09123 Cagliari, Italy.
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numerically observed by Beigieet al. @1#, and attributed to
the non-Gaussian nature of the stretching distribution.

The aim of this article is to provide a quantitative estima
of the rate of growth of the intermaterial contact area
chaotic flow systems for short- and intermediate-time sca

The analysis of the rate of growth of interfaces evolvi
within the chaotic region in two-dimensional~2D! time-
periodic flows finds its direct application in the study of mi
ing process in fluid flows, when the stretching of an interfa
between two fluid species affects the rate of mixing, and
the kinetic-dynamo phenomena, when the stretching of fl
elements affects magnetic field amplification. In particul
the short- or intermediate-time scales are those relevan
fluid-mixing applications.

Indeed, mixing of fluids takes place by a combination
different mechanisms such as stirring, stretching, foldi
and diffusion, the latter one promoting uniformity at sma
length scales. If the viscosity is high enough to ens
creeping-flow conditions, then diffusion effects can be n
glected at the early stage of the mixing process. Hencefo
a purely kinematic approach to a real mixing system~such as
the analysis of the stretching of the fluid-fluid interfac!
makes sense at short- or intermediate-time scales, i.e., a
as the characteristic length scales controlled by convec
are larger than the diffusive-length scales.

In this article we derive an analytic expression for t
short- or intermediate-time behavior of the moments of
stretching fieldM (m;n)5^(l (n))m& ~where m51,2,3, . . . ,
and ^ & indicates the average with respect to the ergodic
variant measure within the chaotic region!, which for m51
coincides with the scaling of the length of a generic mate
filament. Attention is focused on two-dimensional, contin
ous, and differentiable periodically forced Hamiltonian sy
tems and incompressible time-periodic fluid flows.

The present analysis is based on the application of a
bal invariant rescaling of the spectrum of finite-time L

r-
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apunov exponents recently proposed in@9# ~see Sec. IV for
details!. We show analytically that themth order moment of
the stretching exponents (m51,2, . . . ) grows at short or in-
termediate time faster than the exponential behavior p
dicted by the Liapunov scaling exp(nmL), although the
short-time scaling behavior may be not strictly exponent
being given by the product of an exponential term and
stretched exponential contribution. The enhanced expon
tial growth observed at short time is a nonpersistent fea
of the flow, since the asymptotic exponential behavior
M (m;n) is definitely controlled byL ~under the condition of
differentiability of the Poincare´ map of the flow!, e.g.,
limn→`lnM(m;n)/n5mL, as predicted by the Oseledec the
rem @10#.

The analysis of the stretching statistics for high values
the iterationn is rendered more accurate in numerical ter
by making use of the invariant definition of stretching relat
to the characteristic~and invariant! asymptotic directions of
the unstable manifold, thus defining the concept of elon
tion @11#. For this reason, the relation between the invari
geometric properties and the statistical characterization
the stretching dynamics are addressed in Sec. II.

The article is organized as follows. Section II briefly r
views the geometric properties of the unstable manifold
their implications in the description of the stretching or elo
gation dynamics. Section III shows the numerical results
the rate of growth of the intermaterial contact perimeter a
the scaling of higher-order momentsM (m;n) by analyzing
several characteristic model systems~standard map, Duffing
oscillator, sine flow, flow between eccentric cylinders!. The
connection between intermaterial contact length and the
godic average of the stretching field is also addressed.
tion IV describes the statistical properties of the stretch
field which are relevant in the analysis of short-time scali
Specifically, the expression for the invariant probability de
sity function of the stretching exponents derived by Adrov
et al. @9# is reviewed and the scaling properties of the va
ance of the stretching exponent are discussed. The inva
rescaling suggested in@9# does in fact express the hig
stretching tail of the distribution as a function solely of t
variance of the stretching field. Application of the invaria
rescaling mentioned above makes it possible to derive
analytic expression for the short-time scaling ofM (m;n) and
to obtain the range of time scales up to which this nonp
sistent scaling occurs~Sec. V!. Comparison with numerica
results for several dynamical systems is addressed in Sec
Finally, Sec. VII discusses the asymptotic scaling
M (m;n) and the influence of stretching heterogeneity
asymptotic behavior.

II. STRETCHINGS, ELONGATIONS,
AND THE INVARIANT GEOMETRIC STRUCTURE

OF THE UNSTABLE MANIFOLD

Throughout this article, two-dimensional time-period
Hamiltonian systems and incompressible chaotic flows
investigated either by analyzing the associated Poinc´
maps, F, or through direct reference to two-dimension
maps which can be regarded as explicit Poincare´ sections of
some continuous-time flow. We shall also assume thatF and
its inverse are both continuous and differentiable, and t
e-
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define a diffeomorphism, and thatF is chaotic within an
invariant submanifoldCc , referred to as the chaotic region

As a starting point, let us consider the evolution of
generic continuous material filament~one-dimensional set o
initial conditions! initially located within the chaotic region
As extensively discussed elsewhere~see@2#, and references
therein!, the evolution of material lines in two-dimension
time-periodic chaotic flows possesses global invariant g
metric features, and convergence towards these invariant
terns occurs after few iterations@3#. From a qualitative point
of view, this phenomenon is due to the dominating role
the unstable manifold@7,8#. A quantitative description of this
geometric invariance can be achieved by introducing
concept ofasymptotic directionality@11#, which is a charac-
teristic property of two-dimensional chaotic area-preserv
diffeomorphisms.

Let us assume thatF is a diffeomorphism which is cha
otic within a submanifoldCc , the chaotic region. The invari
ant orientational properties of the mapF are fully described
by a vector field$èu (x)% tangent at each pointxPCc to the
unstable manifoldW u. The vectorèu (x) can be obtained as
the limit of the unstable eigenvector of the Jacobian ma
of the nth-order map evaluated at thenth-order preimage of
the pointx:

Fn* „F2n~x!…en
u~x!5l~n!~x!en

u~x!, ~1!

èu ~x!5 lim
n→`

en
u~x!, ~2!

where F* (x)5]F/]x is the Jacobian matrix ofF,
Fn* „F2n(x)… 5 ]Fn(x)/]xux5F2n(x) 5 ) j 51

n F* „F2 j (x)…,
andl (n)(x) is a diverging sequence of eigenvalues~equiva-
lent to the stretching at pointx). @In determining the limit in
Eq. ~1!, some precautions should be taken, namely, that
the en

u(x) are unit vectors and that theirx component should
be non-negative. This is because the convergence ofen

u(x)
towardsèu (x) is, strictly speaking, a convergence of eigen
paces.#

It has been shown that the vectoren
u(x) converges towards

èu (x) for eachx within the chaotic region, and that the d
rection spanned byèu (x) coincides with the asymptotic di
rection attained by the tangent to a material line atx ad-
vected by the flow@11#. Let Ex

u be the ~one-dimensional!
vector subspace spanned byèu (x). The unstable~dilating!
subspacesEx

u defined for eachxPCc are related to each othe
by the equation

EF~x!
u 5F* ~x!Ex

u , ~3!

which means that ifyuPEx
u , thenF* (x)yuPEF(x)

u .
By making use of the invariant properties ofF expressed

by the field of vectors$èu (x)%, the stretching dynamics in
duced byF can be conveniently described in terms of t
elongationsle

(n)(x). The elongationle
(n)(x) is the stretching

experienced aftern iterations at the pointx along the
asymptotic unstable directions~tangent to the unstable man
fold!, i.e.,
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le
~n!~x!5

uuFn* ~x!yuuu

uuyuuu
, yuPEx

u ~4!

where uu uu indicates vector norm. The definition of elon
gation is similar to that of stretchingl (n)(x), defined as
l (n)(x)5uuFn* (x) l(0)uu/uu l(0)uu, where l(0) is an arbi-
trarily oriented initial vector@4#. However, while the elonga
tion le

(n) is strictly speaking a field, depending on spacex
and timen, the stretchingl (n)(x) also depends on the orien
tation of the initial vector, and is therefore not unique
specified byx and by the number of iterationsn. Despite this
conceptual difference, the scaling properties of stretchi
and elongations are the same because arbitrarily orie
vectors converge exponentially towards the asymptotic fi
of unstable directions spanned by the field$èu (x)%. For this
reason, we shall henceforth use elongations and stretch
as synonymous terms in the analysis of statistical proper

Theelongation exponent an(x) can be defined as the natu
ral logarithm of the elongation,an(x)5 ln@le

(n)(x)#. The defi-
nition of elongation given by Eq.~4! is particularly useful in
theoretical analysis. It follows in fact from the recursive r
lation between invariant unstable subspaces$Ex

u%, Eq. ~3!,
that then-step elongation exponentan(x) can be expresse
as the summation of the one-step elongation exponentsa1(x)
along a particle trajectory starting fromx @11–13#, i.e.,

an~x!5 (
j 50

n21

a1„xj~x!…, xj~x!5F j~x!. ~5!

Equation~5! shows that the stretching dynamics is stric
a multiplicative process once expressed with respect to
invariant basis$èu (x)%. It also gives a convenient way t
estimatean(x) @and analogously the finite-time Liapunov e
ponent defined ash(x;n)5an(x)/n# numerically as the su
perposition of the one-step elongation exponents.

Let us usê & to denote the ensemble average with resp
to the uniform ergodic invariant measure within the chao
regionCc . As a consequence of Eq.~5!, it follows that

^an&5^ lnle
~n!&5nL.^ lnl~n!&, ~6!

sa
2~n!5^~an2nL!2&

5 (
j 50

n21

(
k50

n21

^@a1„xj~x!…2L#@a1„xk~x!…2L#&

.Š~ lnl~n!2^ lnl~n!& !2
‹, ~7!

whereL is the Liapunov exponent.

III. RATE OF GROWTH OF INTERMATERIAL
CONTACT LENGTH

We shall now analyze the evolution of the intermater
contact lengthL (n) aftern iterations by considering an initia
regular curveg0 of lengthL (0), parametrized with respect t
a real parameterp, i.e., g05$x5(x,y)ux5x0(p),pP@0,1#%.
After n iterations, g0 evolves into a new segmentgn
5$xn(p)5Fn

„x0(p)…, pP@0,1#%, the length of which is
given byL (n),
s
ed
ld

gs
s.

-

e

ct
c

l

L ~n!5E
0

1UUdxn~p!

dp UU dp

5E
0

1UU]Fn~x!

]x U
x5x0~p!

dx0~p!

dp UU dp. ~8!

The quantity appearing within the integral in Eq.~8! is pro-
portional to the local stretchingl (n)

„x0(p)… aftern iterations,
evaluated atx0(p). The intermaterial contact lengthL (n) can
therefore be expressed as

L ~n!.E
0

1

l~n!
„x~p!… dp5^l~n!&g0

.^le
~n!&g0

, ~9!

where^ &g0
indicates that the average is performed overg0.

By taking the average of Eq.~9! over all the possible one
dimensional curves embedded in the chaotic region, it
lows that

L ~n!;^le
~n!&, ~10!

i.e., the scaling properties of the intermaterial contact len
can be predicted by the scaling of the first-order mom
M (1;n) of the elongation field, averaged with respect to t
ergodic invariant measure onCc .

The numerical validation of this result is shown in Fig.
which illustrates the comparison of the scaling behavior
ln^le

(n)& ~dotted lines! and lnL(n) vs n ~continuous lines! for an
arbitrary initial filamentg0 and for two different dynamica
systems on the torus: the sine-flow map@14#

xn115xn1T f„yn1T f~xn!… mod 1,

yn115yn1T f~xn! mod 1, ~11!

with f (x)5sin(2px), and the Chirikov standard map@15#

xn115xn2~T/2p!sin~2pyn! mod 1,

yn115yn1xn11 mod 1, ~12!

FIG. 1. Comparison of ln̂le
(n)& ~dotted lines! and the natural

logarithm of the intermaterial contact length lnL(n) ~solid lines! vs n
for an arbitrary initial filamentg0 lying within the chaotic regionCc

for two different dynamical systems.~a!,~b! Sine flow,T50.6; ~c!,
~d! standard map,T520. Lines~a! and ~b! @and analogously lines
~c! and ~d!# have the same slope.
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for a value ofT.Tc.0.97, whereTc is the characteristic
value of the parameter, corresponding to the breakup of
last Kolmogorov-Arnold-Moser~KAM ! torus for the stan-
dard map@16#.

An important numerical implication of Eq.~10! is the
following. The direct estimate ofL (n) from its definition as
the length of an evolved curvegn after n iterations, starting
from g0, requires an iterative interpolation along the initi
filamentg0 in order to preserve its continuity@3#. As a result,
the analysis is limited by computer resources, both in ti
and in memory, to low values ofn.8212. The estimate of
the scaling ofL (n) as the average of^le

(n)& along an ergodic
trajectory, Eq.~10!, solves many numerical problems b
making it possible to reach values ofn of the order ofn
5200–300, which it would otherwise have been impossi
to investigate starting from the original definition, and
obtain accurate results in a reasonable span of comp
time.

As several authors have already pointed out@1,3#, the
scaling behavior ofL (n), or equivalently of^le

(n)&, can be
approximated for small or intermediate values ofn by means
of an exponential law

L ~n!;^le
~n!&;enu, ~13!

where u is an exponent definitely greater thanL, the Li-
apunov exponent of the system. To give a numerical
ample, Fig. 2 shows the short-time behavior of ln(^le

(n)&), its
linear fitting ln(̂ le

(n)&);nu and the comparison with the linea
scaling of^ lnle

(n)&5nL controlled by the Liapunov exponen
L for several dynamical systems, such as the sine-flow
~11!, the standard map Eq.~12!, the Duffing oscillator@17#

FIG. 2. Short-time behavior of̂lnle
(n)& ~dotted lines! and of

ln^le
(n)& ~dots! for several chaotic dynamical systems. The avera

were performed over an ergodic trajectory ofNp tracer points
within the chaotic regionCc . ~a!,~b! Duffing oscillator,«52.35,
v51 (Np553105); ~c!,~d! flow between eccentric cylinders
uout5(5p/2), (Np5105); ~e!,~f ! standard map,T530 (Np5107);
~g!,~h! sine flow,T52.0 (Np5107). The solid lines show the ex
ponential behavior ln̂le

(n)&5exp(nu), Eq. ~13!. The dotted lines
show the exponential behavior for^ lnle

(n)&5nL.
e

e

e

ter

-

q.

ẋ5y,

ẏ5x2x31« cos~vt !, ~14!

and the flow between two eccentric corotating cylinders@5#.
The latter system is a typical, physically realizable chao
flow extensively used in laboratory and numerical expe
ments on chaotic mixing~see@4# for a review!. In this sys-
tem, the two cylinders rotate in a discontinuous time-perio
fashion in order to generate a chaotic flow@18#. Under
creeping-flow conditions, a closed-form expression for
stream function is available@19#. The geometry of the appa
ratus is characterized by two parameters:r 5r in /r out ~the ra-
tio of the radius of the inner cylinder to that of the outer! and
ec5e/r out ~the dimensionless eccentricity! ec5e/r out, given
by the distance between the centers of the two cylinders
vided by the radius of the outer cylinder. The flow protoc
is parametrized by the rotation of the outer cylinderuout and
by the ratioV of the rotation angle of the inner cylinder t
that of the outer cylinder. The valuesr 51/3, ec53/10, and
V53 are used here.

Let us now consider the higher-order moments of
stretching hierarchyM (m;n). Such moments seem to exhib
a short- or intermediate-time exponential scaling withn,

M ~m;n!5^~le
~n!!m&;exp@nu~m!#, m51,2,3, . . .

~15!

characterized by an exponentu(m), always greater than the
asymptotic exponentmL. By definition, for m51,
u(1)5u introduced in Eq.~13!. Figure 3 shows the behavio
of lnM(m;n) vs n for m51,2,3 for the sine flow (T50.5)
and for the standard map (T56.9115) and its short-time lin-

s

FIG. 3. lnM(m;n) vs n for two different dynamical systems.~a!
m51; ~b! m52; ~c! m53. The dotted lines show the short-tim
exponential behaviorM (m;n).exp@nu(m)#, Eq. ~15!. ~a! Sine flow
(T50.5); ~b! standard map (T56.9115).
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ear fitting lnM(m;n);nu(m). It can be observed that the ex
ponential behavior expressed by Eq.~15! holds over a sig-
nificant range ofn, but asn increases beyond a certain valu
~characteristic for each system and depending upon the o
m), the momentsM (m;n) start to deviate significantly from
the initial scaling and move slowly towards the asympto
behavior expressed by exp$n@mL1o(n)#%, as predicted by the
Oseledec theorem@10#. Moreover, the larger the orderm, the
smaller then range of validity of Eq.~15! becomes. Al-
though Eq.~15! does not hold asymptotically, the range ofn
for which it may be assumed to be valid, and the range
values attained byM (m;n) ~hundreds of decades! are indeed
significantly large. Furthermore, the short- or intermedia
time scaling is of specific relevance in many fluid-mixin
phenomena which involve transient processes.

It should be observed that we have so far used the t
short- or intermediate-time scales in a fairly qualitative wa
practically as the opposite of asymptotic long-term behav
A quantitative estimate of the time scales up to which E
~13! and ~15! are valid will be given in Sec. VI once a
analytical expression has been derived for the temporal
havior M (m;n).

By anticipating a result that will be extensively discuss
below ~Sec. VI!, Eq. ~15! can be viewed as the manifestatio
of an important statistical feature characterizing all the m
ing systems analyzed here: regardless of the functional f
of the probability density function for stretching exponen
its variancesa

2(n) is a monotonically increasing function o
n diverging to infinity ~see Sec. IV B!. In actual fact, the
only case for which ^(le

(n))m&;exp(nmL) at short- or
intermediate-time scales is given by the family ofK diffeo-
morphisms on the torus, which are topologically conjug
with the linear toral automorphism@20#. These systems ar
globally hyperbolic and are characterized by a uniform sc
ing exponent~coinciding with the Liapunov exponent!. For
such systems,sa(n)5sK1o(n), and the variance therefor
saturates towards a constant valuesK>0.

IV. STATISTICAL PROPERTIES
OF THE ELONGATION FIELD

We have shown in Sec. III that the intermaterial cont
length L (n) can be related to the temporal evolution of t
stretching field, averaged with respect to the ergodic inv
ant measure, Eq.~10!. This makes it possible to approach th
study of the rate of growth ofL (n) analytically by making use
of the statistical properties characterizing the elongat
field. The main statistical features ofle

(n) which will be used
to obtain an analytic expression foru(m) are analyzed in this
section.

A. Globally invariant rescaling
of the elongation exponent spectra

The analysis of the invariant statistical properties of c
otic dynamical systems@21–24# and in particular of short-
time Liapunov exponents~SLE! has been a subject of intens
investigation in recent years@25#. Some invariant rescaling
for SLE spectra have been proposed, most of them deriv
from the original exponential rescaling suggested by Gra
bergeret al. @26#. A similar exponential rescaling was con
er

f
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e-
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m
,

e

l-

t

i-

n

-

g
s-

sidered by Ott and Antonsen in the case of the incompre
ible generalized 2D Baker transformation@6#, and although
derived in the case of a noncontinuous map, this has s
been taken as the general model for the invariant rescalin
stretching distributions in chaotic dynamical systems
duced by the multiplicative nature of the stretching proce
All the invariant rescalings so far proposed fail for the lo
stretching tail ~i.e., for an,nL, i.e., for h,L) @12,27#,
which is strongly affected by the stickiness of quasiperio
islands and cantori surrounding the chaotic region.

A globally invariant rescaling for the probability densit
function for the elongation~stretching! exponentsP(an ;n)
has recently been proposed@9# in the case of two-
dimensional area-preserving chaotic maps:

P~an ;n!5
1

sa~n!
PS an2nL

sa~n! D , ~16!

P(a) being an invariant probability density function of th
rescaled variablea5(an2nL)/sa(n), andsa(n) the square
root of the variance of the elongation exponents, Eq.~7!. The
invariant functionP(a) is a standardized probability densit
function possessing zero mean and unit variance. To giv
numerical validation of Eq.~16!, Fig. 4 shows the behavio
of the invariant functionP(a) for a typical dynamical sys-
tem ~standard map!. Numerical simulations confirm tha
P(a) is globally invariant, i.e., the rescaling relation e
pressed by Eq.~16! holds also for negative values ofa cor-
responding to the low-stretching region. The influence
quasiperiodic islands, elliptic points, and cantori, arou
which stretching is particularly low, shows itself as a hum
for negative values ofa ~see Fig. 4!. This hump moves to-
wards more negativea and lower probability values asn
increases, and progressively becomes smoother until it
lapses into a single enveloping curve@9#.

We shall useā to denote the mode ofa, i.e., the value
corresponding to the maximum ofP(a), maxaP(a)

FIG. 4. P(a) vsa for different values ofn for the standard map
at T56.9115. The arrow shows the direction of increasing values
n5150,175,200,225. The dotted vertical line shows the value of

modeā. The simulations were performed over an ergodic traject
within the chaotic region (Np5107 data points!.
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5P(ā), which is also the local maximum ofP(a). By
enforcing Eq.~16! and by making use of a slight modifica
tion of the exponential rescaling proposed by Grassbe
et al. @26#, it is shown in @9# that for a>ā the functional
form of P(a) attains the general expression

P~a!5P~ā!expF2c1z21S a2ā

c2
D G , a>ā ~17!

wherec1 and c2 are two constants and the functionz21 is
the inverse function ofz(n) defined by

z~n!5n/sa~n!. ~18!

Sincez(n) is a monotonically increasing function ofn, di-
verging to infinity asn→`, it admits a global inverse func
tion z21. Figure 5 shows the ln-normal plot of the positiv
tail of P(a) vs a2ā numerically estimated for several dy
namical systems, and its excellent agreement with the th
retical expression Eq.~17!.

Equation~17! indicates that the functional form ofP(a),
for a.ā, is controlled by the fluctuational-correlation pro
erties of the elongation field, expressed by the temporal
havior of the variance of the elongation exponents. The
plications of this property are extensively addressed in S
VI of this article.

Another interesting feature of the invariant rescaling E
~16! is the fact that numerical simulations indicate the ex
tence of a finite and constant upper boundamax of the sup-
port of P(a) such thatP(a)50 for a.amax. As an ex-
ample, Fig. 6 shows the behavior ofamax

(n) vs n for the sine-
flow map~for several values of the parameterT), amax

(n) being
the value ofamax associated with thenth-order approxima-
tion of P(a)5sa(n)P(an ;n)uan5nL1asa(n) . In point of
fact, it is easy to show by enforcing the Oseledec theor
@10# that if P(a) is a smooth function ofa, then

amax
~n! <Cnn/sa~n!, 0<n,1 ~19!

FIG. 5. P(a) vs (a2ā).0. Comparison of the theoretical ex
pression Eq.~17! with simulation results.~a! Standard map,T
56.9115; ~b! sine flow, T50.6; ~c! Duffing oscillator, «52.35,
v51.0.
er
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e-
-
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whereC is a positive constant. Indeed, the results shown
Fig. 6 ~and the analysis of many other dynamical syste
such as the standard map and the Duffing oscillator, not
ported in the figure! suggest that the exponentn equals the
asymptotic exponent characterizing the scaling ofsa(n).
The existence of a constantamax ~which is a conjecture
backed up solely by numerical results! will be further used in
order to derive an upper bound for the range ofn within
which the exponential scalings Eqs.~13! and ~15! hold ~see
Sec. VI!. It is, however, important to stress that no claim
made as regards the general validity of this conjecture. I
simply asserted that the existence of a constantamax has
been observed and checked accurately for the dynamical
tems under investigation.

B. Correlation properties and scaling ofsa„n…

In Sec. IV A we have shown that the functional form
the high-stretching tail ofP(a) ~for a.ā) depends solely
on the time behavior of the variance of the elongation ex
nents, through the functionz21(x). In this section we outline
the main scaling properties ofsa

2(n) which will be useful for
the purposes of this article.

Starting from Eq.~5!, and after some algebra, it follow
that

sa
2~n!5n~^a1

2&2^a1&
2!

3F2(
k50

n21

C2a1
~k!212

2

n(
h50

n21

hC2a1
~h!G , ~20!

where

C2a1
~h!5

Š@a1„xi 1h~x!…2^a1&#@a1„xi~x!…2^a1&#‹

^a1
2&2^a1&

2
,

h50,1, . . . ~21!

is the normalized@C2a1
(0)51# autocorrelation function of

the one-step elongation exponents averaged over an erg
trajectory.

According to Eq.~20!, if C2a1
(h) is summable@i.e., if

(h50
` C2a1

(h) is finite#, thensa
2(n) scales asymptotically a

sa
2(n).s0

2n, since the term within square brackets in E
~20! approaches a constant value. The summability of

FIG. 6. amax
(n) vs n for the sine flow for several values ofT; ~a!

T50.6; ~b! T50.8; ~c! T51.0.
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autocorrelation functionC2a1
(n) has been proved by Ruell

@28,29# and Sinai@30# ~see also@31#! for hyperbolic systems
for which the autocorrelation function of any smooth fun
tion exhibits an asymptotic exponential decay. As ext
sively discussed in@11#, two-dimensional chaotic diffeomor
phisms admit a hyperbolic structure within the chaotic reg
Cc . It is therefore possible to enforce the Sinai-Ruelle th
rem on the autocorrelation function of the one-step elon
tions, and to conclude that the linear asymptotic scaling
sa

2(n) with n is a generic feature of two-dimensional chao
diffeomorphisms.

On the other hand, several authors@32,12# have observed
numerically that at intermediate-time scales (n,nc , where
nc is a crossover time! sa

2(n) exhibits an anomalous powe
law behaviorsa

2(n).s i
2n2b with 0,b,1. The crossover

time nc can be very large, depending on the correlation pr
erties~stickiness! within the boundary layer contained inCc
surrounding islands of quasiperiodicity and cantori@33#. As a
consequence of this observation, some authors argue tha
anomalous scaling characterized by an exponentbÞ1/2
would be a persistent feature of some dynamical syst
@32,12#. For the purpose of this article@which focuses on the
short- and intermediate-time behavior of the moment hie
chy M (m;n)#, the asymptotic behavior ofsa

2(n) is of limited
interest. However, for the sake of completeness, it is imp
tant to point out that recent numerical analysis@34# has
clearly shown that for two-dimensional chaotic diffeomo
phisms in which an anomalous scaling behavior ofsa

2(n) has
been observed with an exponentbÞ1/2 ~such as the stan
dard map for 1<T<5 @32# and T56.9115@12#!, this phe-
nomenon is of transient nature, and asn increases the scalin
of sa

2(n) converges towards the linear scaling.
To give an example of the typical crossover behavior

sa(n), Figs. 7~a!–7~c! show the case of the sine flow fo
three different values of the parameterT. Depending onT,
the crossover timenc can vary fromnc.1000 (T50.5) to
nc.100 (T50.6). ForT50.8, asymptotic behavior sets i
right from the first iterations and no crossover occurs.

This crossover behavior ofsa(n) had a direct counterpar
in the behavior forz(n), Eq. ~18!, and consequently in its
inverse functionz21(x) entering into Eq.~17!, which can be
approximated by

z21~x!5H ~s ix!1/~12b! for x,z~nc!

~s0x!2 for x.z~nc!.
~22!

Where no crossover occurs, we define conventionallys i
5s0 andb51/2.

By substituting Eq.~22! into Eq. ~17!, it is possible to
obtain the functional dependence ofP(a) on a for a.ā.
Equations~16!, ~17!, and ~22! are in fact the starting poin
for the analysis of the scaling behavior of the moments of
stretching field. Needless to say, the short-time behavio
sa(n) is particularly important in the analysis of the sho
or intermediate-time scaling ofM (m;n).

V. SHORT-TIME SCALING OF THE MOMENT
HIERARCHY M „m;n…

By applying the results discussed in Sec. IV, it is possi
to obtain an analytic expression for the moment hierarchy
-
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the elongations~stretchings!. This topic is developed in this
section. LetF(le

(n) ;n) be the probability density function o
the elongation fieldle

(n) associated with its ergodic averag
The relation betweenF(le

(n) ;n) and P(an ;n) follows from
a simple probability balance and reads as

F~le
~n! ;n!5

P~ lnle
~n! ;n!

le
~n!

. ~23!

From the definition of themth order momentM (m;n)
5^(le

(n))m& of le
(n) , it readily follows that

M ~m;n!5E
0

`

~le
~n!!mF~le

~n! ;n!dle
~n!

5E
0

`

~le
~n!!m21P~ lnle

~n! ;n!dle
~n! . ~24!

FIG. 7. Ln-ln plot of sa(n) vs n for the sine flow for several
values ofT. ~a! T50.5; ~b! T50.6; ~c! T50.8. Line~a! shows the
short- or intermediate-time behaviorsa(n);nb. Line ~b! shows the
asymptotic behaviorsa(n);n1/2. The dotted vertical line indicates
the crossover valuenc .
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The functional form ofP(an ;n), Eq.~16!, can be substituted
into Eq. ~24!, and by making use of a change of integrati
variablea5(lnle

(n)2nL)/sa(n) it follows that

M ~m;n!5enmLE
2`

`

eamsa~n!P~a!da. ~25!

Sincesa(n) is by definition positive, Eq.~25! can be ma-
nipulated to yield

M ~m;n!

enmL
5C1E

0

`

eamsa~n!P~a!da5C1I ~m;n!,

~26!

whereC5*2`
0 enmsa(n)P(a)daP(0,1) is a positive quantity

always bounded by 1. Equation~26! follows from the appli-
cation of the mean-value theorem to the integral appearin
Eq. ~25! restricted to the interval (2`,0). The invariant
function P(a) is a smooth, unimodular function fora>0,
and the integrandeamsa(n)P(a) attains a local maximum fo
aP@0,̀ ). We can therefore apply the method of steep
descent@35# to the integral appearing in Eq.~26!. This gives
the following estimate forI (m;n):

I ~m;n!.ea* msa~n!P~a* !, ~27!

where a* 5a* (n,m).0 is the local maximum of
exp@amsa(n)#P(a), the solution of the equation

P~a* !msa~n!1
dP~a!

da
ua5a* 50. ~28!

Since exp@amsa(n)# is a monotonically increasing functio
of n for eachm, it is easy to see that the unimodularity
P(a) for positivea implies thata* is always greater than
the modeā of P(a), a* .ā for all n, m integers. This
condition ensures that the functional expression forP(a) in
the range (ā,`), obtained by merging Eqs.~17! and ~22!,
can be properly applied to obtain

I ~m;n!.P~ā!ea* msa~n!expF2c1z21S a* 2ā

c2
D G ,

~29!

wherea* can be expressed in closed form in terms of
two functionsz andz21:

nm

z~n!
2

c1

c2

dz21~x!

dx
ux5~a* 2ā !/c2

50. ~30!

Together with the expression forz(n) and z21(x), Eq.
~22!, Eqs.~29! and ~30! yield an analytic expression for th
mth-order moment of the elongation field depending exc
sively on the functionz(n), its inverse, and the two constan
c1 and c2 characterizing the properties ofP(a) for each
dynamical system. As a consequence of Eq.~30!, the scaling
behavior ofM (m;n) can be directly inferred from the sca
ing properties ofz21(x). As we are interested in the short- o
intermediate-time behavior of the moment hierarc
M (m;n), we can enforce Eq.~22! for the functionz21(x) at
intermediate-time scales (n,nc) to obtain
in

t

e

-

a* 5ā1Q~m!n12b, ~31!

where the functionQ(m) is given by

Q~m!5S m~12b!s i

c1~s i /c2!1/~12b!D ~12b!/b

5S m~12b!c2
1/~12b!

c1
D ~12b!/b 1

s i
5

K~m!

s i
. ~32!

By substituting Eq.~32! into Eq. ~29!, it follows that

I ~m;n!.P~ā!exp@nG1~m!1nbG2~m!#, ~33!

where the two functionsG1(m) andG2(m) are defined by

G1~m!5Q~m!s ibm5K~m!bm, G2~m!5ās im.
~34!

The constantC entering into Eq.~26! is bounded by 1 and
can be overlooked as compared to the exponential t
I (m;n). By collecting together Eqs.~33! and ~34! and sub-
stituting them into Eq.~26!, we thus arrive at the estimate fo
M (m;n) given by

M ~m;n!.P~ā!exp$n@mL1G1~m!#1nbG2~m!%.
~35!

Let us now analyze the implications of Eq.~35! in greater
depth. The first and most important result is that t
mth-order momentsM (m;n) for m51,2, . . . scale withn
faster than exp(nmL), since bothG1(m) and G2(m) are al-
ways greater than or equal to zero. However, apart from
case whereā50, which implies by Eq.~34! G2(m)50, the
short-time behavior ofM (m;n) is not strictly exponential,
due to the presence of the stretched exponential contribu
exp@nbG2(m)#. This means that in the general case, the ex
nential expressions, Eqs.~13! and ~15!, should be regarded
simply as a good, and sometimes very good, approxima
of the short-time scaling. The caseā.0 often occurs in the
presence of significantly asymmetricP(a), as can be ob-
served from Fig. 4. In the caseā.0, sinceG2(m) is a lin-
early increasing function ofs i @while G1(m) does not de-
pend explicitly ons i#, the greater the value ofs i ~i.e., the
broader the distribution of elongation exponents!, the faster
the short-time growth of the intermaterial lengthL (n) and of
the higher-order momentsM (m,n), compared to limit pre-
dicted by the Liapunov exponent.

A particular case is represented by the family ofK diffeo-
morphisms on the torus. For these systems, as already
cussed in Sec. III,sa(n)5sK1o(n)>0 is definitely a con-
stant and all the momentsM (m;n) follow the exponential
homogeneous scaling induced by the Liapunov expon
M (m;n);exp(nmL). This result follows directly from Eqs
~25! and~26! since the termI (m;n) does not depend explic
itly on the timen.

From the observations discussed above, it follows that
short-time deviation from the exponential behavi
exp(nmL) can be regarded as a measure of the dynamic
erogeneity of the elongation field as it is directly related
the properties of the variancesa

2(n). Beigie et al. @1# at-
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tribute this deviation, in the casem51, to the non-Gaussian
nature of the stretching distribution. Although it is certain
true that the non-Gaussian behavior ofP(a) influences the
scaling of the moment hierarchyM (m;n), the conclusion
envisaged in@1# is not of general validity. Indeed, also in th
case of a GaussianP(a), the length of a generic materia
line can grow at short times with an exponent definite
larger thanL. To check this assertion, let us consider
square-exponential behavior forP(a)5P(ā)exp(2ka2)
~coinciding with a Gaussian shape fork51/2). This case
implies ā50, b51/2, andk5c1 /(c2s i)

2. By substituting
these values into Eq.~35! it follows that

M ~m;n!;expFnS mL1
s i

2m2

4k D G . ~36!

A short-time deviation from the Liapunov scaling can the
fore occur also in the strictly Gaussian case (k51/2) since
s i is nonzero. As mentioned above, the main factor affect
deviation from the Liapunov scaling would appear to be
heterogeneity in the distribution of the stretching expone
~i.e., a nonzero value ofs i), rather than the non-Gaussia
feature of the associated probability density function.

VI. COMPARISON WITH NUMERICAL RESULTS

One important issue remaining after the analysis de
oped in Sec. V is the definition of the range of tempo
validity of Eq. ~35!. This topic is analyzed in this section
which also compares Eq.~35! with the results of numerica
simulations.

The explicit expression ofa* as a function ofm andn,
Eq. ~31!, enables us to derive some general properties
regards then range of applicability of Eq.~35! and the quan-
titative meaning of the short or intermediate scaling
M (m;n). The steepest-descent approximation of the integ
I (n,m) Eq. ~27! makes sense as long as the local maxim
a* defined in Eq.~31! is smaller than the finite upper boun
amax. The validity of Eq. ~31! is therefore limited by the
condition a* ,amax. Since a* depends explicitly on the
time n, this condition can be recast into an equivalent co
dition for the time range up to which Eq.~35! holds, i.e.,

n,n* 5S amax2ā

Q~m!
D 1/~12b!

. ~37!

The valuen* can be taken not only as the upper bound
the applicability of the steepest-descent method@i.e., for Eq.
~35!#, but also as a quantitative definition of the concept
short- or intermediate-time scaling.

Since b,1, and Q(m) is a monotonically increasing
function of m, the boundn* is a monotonically decreasin
function of the orderm. The range of applicability of Eq
~35! and the concept of short- or intermediate-time scal
therefore depend onm, and their validity is restricted in prac
tice to the lower-order moments (m51,2,3). This result is in
agreement with the numerical results as can be obse
from the comparison of the short-time scaling of the th
lower-order moments shown in Fig. 3.

Let us now compare Eq.~35! with numerical simulations.
Figure 8 shows the excellent agreement between nume
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results forM (1;n), M (2;n), andM (3;n) for the sine flow
(T50.5) and the theoretical prediction Eq.~35!. It is impor-
tant to point out that all the parameters,s i , b andc1, c2 and
P(a), entering into Eq.~35! have been independently ob
tained, respectively, from the scaling ofsa(n) and from the
interpolation ofP(a) with the theoretical expression Eq
~17! and ~22!. In this case,amax.2.0 and then range of
applicability of Eq. ~35! is significantly large:n* (m51)
.180,n* (m52).60, andn* (m53).35.

The case of the sine flow forT50.5 is particularly inter-
esting from the point of view of the scaling, since the fun
tion P(a) exhibits a value ofā which is significantly greater
than zero, namely,ā.0.34, and the factorG2(m) related to
the stretched exponential contribution is of the same orde
magnitude as the factorG1(m) of the strictly exponential
scaling. In this case, the stretched exponential te
exp@nbG2(m)# makes a significant contribution to the initia
scaling. This is made evident in Fig. 8, where the dotted lin
show the functional behavior of Eq.~35!, with the stretched
exponential term fictitiously set equal to zero@i.e., G2(m)
50#.

Although Eq.~35! does not predict a strictly exponentia
behavior for^(le

(n))m&, an exponential fitting of numerica
data furnishes a good approximation of the short-time beh
ior, as already discussed in Sec. II. It is reasonable to
proximate the scaling ofM (m;n) with an exponential behav
ior exp@nup(m)#, in which up(m) is an effective scaling
exponent. As for any effective quantity, the definition
up(m) is subject to a certain degree of arbitrariness. W
defineup(m) as the value of the derivative of lnM(m;n) at
the midpointnp(m)5n* (m)/2 of its range of applicability
defined by Eq.~37!, i.e.,

up~m!5
dlnM ~m;n!

dn U
n5np~m!

FIG. 8. lnM(m;n) vs n ~dots! for the sine flow (T50.5) com-
pared with the theoretical expression Eq.~35!. ~a! m51; ~b! m
52; ~c! m53. The dotted lines are the predictions based on
~35!, with the stretched exponent contribution overlooked@i.e.,
G2(m)50# for m51 andm52.
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5mL1G1~m!1G2~m!bnp
b21 . ~38!

This criterion forup(m) gives good scaling predictions, i.e

exp$@mL1G1~m!#n1G2~m!nb%.exp@nup~m!#

for n,n* . ~39!

To give a numerical example, Fig. 9 shows the good leve
agreement between numerical simulations and the effec
exponential approximation based onup(1), obtained theo-
retically from Eqs.~35! and ~38!, for the sine flow and the
standard map for different values of the parameters. In o
to summarize the extensive numerical analysis perform
Fig. 10 compares the exponentu5u(1) obtained from the
analysis of the ergodic averages of the elongation expo
and the effective exponentup5up(1) for several dynamica
systems~Duffing oscillator and standard map! and chaotic
flows ~sine flow and flow between two eccentric cylinder!.
The agreement is satisfactory and the maximum deviatio
less than 5%.

FIG. 9. lnM(1;n) vs n for several values ofT ~dots! compared
with the exponential behaviorM (1;n);exp(nup) ~lines! with up

5up(1) given by Eq.~37!. ~a! Sine flow,T50.6,0.8,1.0,1.2,2.0.~b!
Standard map,T56.9115,10,20,30,50.
f
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We therefore conclude that the theoretical analysis ba
on Eq.~35! is fully predictive and yields accurate values f
the short- or intermediate-time scaling of the intermate
contact lengthL (n) and of the entire moment hierarch
M (m;n).

VII. ASYMPTOTIC SCALING OF M „m;n…

As a final issue, let us consider the asymptotic scaling
M (m;n) for differentiable dynamical systems in order
highlight the influence of the variancesa(n).

As discussed in the Introduction, the application of t
Oseledec theorem to diffeomorphisms implies that

lim
n→`

1

n
lnM ~m;n!5mL, ~40!

i.e., the dominant contribution to the asymptotic scaling
the stretching hierarchyM (m;n) is made by the Liapunov
factor exp(nmL). This result would suggest that for ver
long time, independently of the initial scaling, the asympto
behavior of M (m;n) is exclusively controlled by the Li-
apunov exponent, anda fortiori, the intermaterial contac
lengthL (n) would definitely grow as exp(nL).

This conclusion is not in fact completely correct, an
apart from the dominant Liapunov scaling, there exists
second-order but significant correction depending on
variancesa

2(n). Let us take Eq.~25! as our starting point to
highlight this additional effect. The support upon whic
P(a) is defined admits, for eachn, an upper boundamax

(n)

given by Eq.~19!.
SinceP(a) is in general a smooth and continuous fun

tion of its argument, we can apply the mean-value theorem
Eq. ~25! to obtain

FIG. 10. u vs up5up(1) given by Eq.~37! for several dynami-
cal systems and several sets of parameters.d: Duffing oscillator,
v51.0, «50.75,2.35;v: flow between eccentric cylinders,uout

52p,5p/2; L: standard map,T56.9115,8,10,20,30,50;s: sine
flow, T50.5,0.6,0.8,1.0,1.2.1.4,2.0.
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M ~m;n!5enmLE
2`

amax
~n!

eamsa~n!P~a! da

5P̃emLnE
2`

amax
~n!

eamsa~n!da

5
P̃enmL

msa~n!
eamax

~n! msa~n!, ~41!

whereP̃P„0,P(ā)….
By Eq. ~19!, amax

(n) sa(n),Cnn, whereC is a constant andn
a positive exponent strictly less than 1. The conditionn,1
ensures that Eq.~40! is satisfied. On the other hand, Eq.~41!
implies that the asymptotic scaling ofM (m;n) is the result
of two main contributions: the exponential Liapunov scali
and a stretched exponential contribution with an expon
n,1 which depends onsa(n).

In the particular case whereamax
(n) is a constant indepen

dent of n, as numerically observed for several dynamic
systems~see Fig. 6!, Eq. ~41! reduces to

M ~m;n!;enmL1amaxmsa~n!;enmL1n1/2ms0, ~42!

in which we use the asymptotic scaling ofsa(n) discussed
in Sec. IV B.

Two main conclusions can be drawn from Eqs.~41! and
~42!. The intermaterial contact lengthL (n) grows asymptoti-
cally faster than exp(nL) by a factor exp(n1/2ms0). More-
over, as regards the short- or intermediate-time scaling
cussed in Sec. V, the asymptotic scaling ofM (m;n), anda
fortiori of L (n), depends on and is enhanced by the hete
geneity of the stretching distribution, expressed quant
tively by the square root of the variancesa(n). This result is
by no means surprising in view of the fact that the hig
stretching tail ofP(a) is entirely controlled by the behavio
of sa(n) through the functionsz andz21.

VIII. CONCLUSIONS

This article develops a scaling theory for the hierarchy
stretching momentsM (m;n) in the case of two-dimensiona
chaotic area-preserving diffeomorphic maps. The casem
51 is particularly interesting as regards the applications
chaotic fluid mixing since it is directly related to the rate
ac

n
,

a

d
d

nt

l

s-

-
-

-

f

o

growth of the intermaterial contact length, which contro
transport and reactive phenomena in the fluid system.

It has been shown that at short- or intermediate-ti
scales, the hierarchyM (m;n) is characterized by an en
hanced exponential scaling, the effective exponent of wh
is greater thanmL.

By making use of the invariant rescaling of the probab
ity distribution of the stretching exponents proposed recen
in @9#, we are able to derive the short-time scaling
M (m;n), Eq. ~35!, and to determine the temporal rangen
P(1,n* ), Eq. ~37!, for which this scaling occurs. Equatio
~35! is a fully predictive relation for the short-time behavio
of M (m;n), as shown numerically for several characteris
model systems, and for a broad range of parameters cha
terizing these systems. All the quantities appearing in
~35! can be obtained independently from the analysis of
variance of the stretching exponentssa

2(n) and from their
invariant distributionP(a).

Our analysis of the short-time behavior, and also of
long-time properties~addressed in Sec. VII!, reveals that the
rate of growth of the intermaterial contact perimeter is
fected by the heterogeneity in the stretching dynamics
pressed by the variancesa

2(n) of the stretching exponen
field. This phenomenon is not only interesting in itself, b
may give rise in the future to some practical implications
the improvement of mixing performances in fluid-mixin
systems.

Another significant effect controlling the short- o
intermediate-time scaling ofM (m;n) is related to the asym
metry of the invariant distributionP(a), expressed qualita
tively by its mode ā. For ā50, which corresponds to a
fairly symmetric case, the initial scaling is strictly expone
tial, and the exponentu(m) is given bymL1G1(m). For
ā.0, which corresponds to highly asymmetric distributio
of the stretching exponents~see, e.g., Fig. 4!, the initial scal-
ing of M (m;n) is not strictly exponential, since a stretche
exponential factor also appears, given by exp@nbG2(m)#. An
approximate~effective! exponential scaling can, however, b
defined also in this case, as developed in Sec. VI, Eq.~38!.
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