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This article derives an analytic expression for the short- or intermediate-time behavior of the moment
hierarchy of finite-time Liapunov exponentstretching exponentsor two-dimensional periodically forced
Hamiltonian systems and incompressible time-periodic fluid flows. As a result, the exponent characterizing the
apparent short-time exponential growth of the intermaterial contact perimeter for two-dimensional systems can
be predicted from the statistical properties of the invariant stretching distribution. The analysis as a whole is in
fact grounded on an analytic expression for the high stretching tail of the invariant distribution of the finite-
time Liapunov exponents. The asymptotic behavior of the moment hierarchy of the stretching field is also
addressed in order to highlight the role of the dynamic heterogeneity accounted for by the variance of the
stretching exponent$S1063-651X98)02807-4

PACS numbd(s): 47.52+j, 05.45+b, 05.90:4-m

I. INTRODUCTION numerically observed by Beigiet al. [1], and attributed to
the non-Gaussian nature of the stretching distribution.
Recent article§1-3] focusing on the evolution of the The aim of this article is to provide a quantitative estimate
spatial structures generated by advection in chaotic flowsf the rate of growth of the intermaterial contact area in
have shown that the formation of partially mixed structureschaotic flow systems for short- and intermediate-time scales.
in time-periodic flows depends on two main interrelated fac- The analysis of the rate of growth of interfaces evolving
tors: (1) the global increase of the intermaterial contact areavithin the chaotic region in two-dimensiong&2D) time-
(and the corresponding decrease of the characteristic lenggieriodic flows finds its direct application in the study of mix-
scale between material elements, referred to as striations fimg process in fluid flows, when the stretching of an interface
shor), and(2) the degree of heterogeneity in the spatial dis-between two fluid species affects the rate of mixing, and of
tribution of the intermaterial contact area. the kinetic-dynamo phenomena, when the stretching of fluid
Despite the intense investigation of chaotic flows over theelements affects magnetic field amplification. In particular,
last decade, oriented mainly towards the characterization dhe short- or intermediate-time scales are those relevant in
stretching statisticg4—6] and the qualitative description of fluid-mixing applications.
the role of the unstable manifold in the formation of coherent Indeed, mixing of fluids takes place by a combination of
structureg7,8], a quantitative theory has yet to be developeddifferent mechanisms such as stirring, stretching, folding,
for the time evolution of the intermaterial contact area andand diffusion, the latter one promoting uniformity at small
the spatial distribution of partially mixed structures. length scales. If the viscosity is high enough to ensure
Contrary to the general belief that the fundamental expoereeping-flow conditions, then diffusion effects can be ne-
nent controlling the temporal behavior of dynamic quantitiesglected at the early stage of the mixing process. Henceforth,
in mixing systemgsuch as the intermaterial contact area ora purely kinematic approach to a real mixing systesoch as
the average characteristic length scale between striatisns the analysis of the stretching of the fluid-fluid interface
the Liapunov exponeri4], Alvarez et al. [3] have recently makes sense at short- or intermediate-time scales, i.e., as far
shown by means of numerical simulations on a two-as the characteristic length scales controlled by convection
dimensional area-preserving and differentiable model systerare larger than the diffusive-length scales.
that the intermaterial contact aréar more precisely the in- In this article we derive an analytic expression for the
termaterial contact perimeter, sinde=2) scales exponen- short- or intermediate-time behavior of the moments of the
tially with the number of flow periods (henceforth referred  stretching fieldM (m;n)=((A(™)™) (wherem=1,23...,
to as iteration but with an exponen# which is unambigu- and( ) indicates the average with respect to the ergodic in-
ously different from and greater than the Liapunov exponentariant measure within the chaotic regipmwhich for m=1
A. A short-time exponential growth faster than eXp), as  coincides with the scaling of the length of a generic material
predicted by the asymptotic Liapunov scaling, has also beefilament. Attention is focused on two-dimensional, continu-
ous, and differentiable periodically forced Hamiltonian sys-
tems and incompressible time-periodic fluid flows.
*Permanent address: Dipartimento di Ingegneria Chimica Univer- The present analysis is based on the application of a glo-
sitadi Cagliari, piazza d’Armi, 09123 Cagliari, Italy. bal invariant rescaling of the spectrum of finite-time Li-
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apunov exponents recently proposed 3 (see Sec. IV for define a diffeomorphism, and thdt is chaotic within an
detailg. We show analytically that theath order moment of invariant submanifold’;, referred to as the chaotic region.
the stretching exponentsn=1,2, . . . )grows at short or in- As a starting point, let us consider the evolution of a
termediate time faster than the exponential behavior pregeneric continuous material filamefane-dimensional set of
dicted by the Liapunov scaling expti), although the initial conditiong initially located within the chaotic region.
short-time scaling behavior may be not strictly exponential As extensively discussed elsewhésee[2], and references
being given by the product of an exponential term and ahereir), the evolution of material lines in two-dimensional
stretched exponential contribution. The enhanced exponetiime-periodic chaotic flows possesses global invariant geo-
tial growth observed at short time is a nonpersistent featurenetric features, and convergence towards these invariant pat-
of the flow, since the asymptotic exponential behavior ofterns occurs after few iteratiofi8]. From a qualitative point
M(m;n) is definitely controlled by (under the condition of of view, this phenomenon is due to the dominating role of
differentiability of the Poincaremap of the flow, e.g., the unstable manifolfi7,8]. A quantitative description of this
lim,_..InM(m;n)/n=mA, as predicted by the Oseledec theo-geometric invariance can be achieved by introducing the
rem[10]. concept ofasymptotic directionality11], which is a charac-
The analysis of the stretching statistics for high values oteristic property of two-dimensional chaotic area-preserving
the iterationn is rendered more accurate in numerical termsdiffeomorphisms.
by making use of the invariant definition of stretching related Let us assume thab is a diffeomorphism which is cha-
to the characteristi€and invariant asymptotic directions of otic within a submanifold’.., the chaotic region. The invari-
the unstable manifold, thus defining the concept of elongaant orientational properties of the mdpare fully described
tion [11]. For this reason, the relation between the invarianby a vector field{el.(x)} tangent at each pointe C. to the
geometric properties and the statistical characterization qfinstable manifoldVV. The vectore?(x) can be obtained as
the stretching dynamics are addressed in Sec. Il. the limit of the unstable eigenvector of the Jacobian matrix

_ The article is or_ganized as follows. Section I br[efly re- of the nth-order map evaluated at tim¢h-order preimage of
views the geometric properties of the unstable manifold anghe pointx:

their implications in the description of the stretching or elon-
gation dynamics. Section Il shows the numerical results for

nNx -n u — n u
the rate of growth of the intermaterial contact perimeter and DM@ =NV ) (x), @
the scaling of higher-order momerité(m;n) by analyzing
several characteristic model systefatandard map, Duffing el(x) = lim e(x), 2
oscillator, sine flow, flow between eccentric cylinderEhe n—o

connection between intermaterial contact length and the er-

godic average of the stretching field is also addressed. Seghere d*(x)=g®/dx is the Jacobian matrix ofd,

tion IV describes the statistical properties of the stretchingpnx (¢ —n(x)) = IDO(X) X e npg = TTI_ 1 ¥ (D1 (X)),
field which are relevant in the analysis of short-time scaling.and)\(n)(x) is a diverging sequence of eag;envaluequiva-
Specifically, the expression for the invariant probability den-jo .t 15 the stretching at poind. [In determining the limit in
sity function of the stretching exponents derived by AdroverEq_ (1), some precautions should be taken, namely, that all

etal.[9] is rewewe_d and the scaling properties of thg Var-ine eX(x) are unit vectors and that theircomponent should
ance of the stretching exponent are discussed. The mvanaBt . o
€ non-negative. This is because the convergence: (e

rescaling suggested if@] does in fact express the high s (x) i il Ki fei
stretching tail of the distribution as a function solely of the Loa\l’:’:i;]se“(x) Is, strictly speaking, a convergence of eigens-

variance of the stretching field. Application of the invariant
rescaling mentioned above makes it possible to derive an It has been shown that the vecsi(x) converges towards
analytic expression for the short-time scalingbfm;n) and  €(X) for eachx within the chaotic region, and that the di-
to obtain the range of time scales up to which this nonperrection spanned bg.,(x) coincides with the asymptotic di-
sistent scaling occuréSec. ). Comparison with numerical rection attained by the tangent to a material linexaad-
results for several dynamical systems is addressed in Sec. Wected by the flow{11]. Let & be the (one-dimensional
Finally, Sec. VII discusses the asymptotic scaling ofvector subspace spanned BY(x). The unstablgdilating)
M(m;n) and the influence of stretching heterogeneity onsubspaces; defined for eaclx e C. are related to each other

asymptotic behavior. by the equation
Il. STRETCHINGS, ELONGATIONS, Eppn=P*(X)E, 3
AND THE INVARIANT GEOMETRIC STRUCTURE
OF THE UNSTABLE MANIFOLD which means that ifc £2, then®* (x)y" e €4, .

Throughout this article, two-dimensional time-periodic ~ BY making use of the invariant properties ®fexpressed
Hamiltonian systems and incompressible chaotic flows ar®Y the field of vectord€,(x)}, the stretching dynamics in-
investigated either by analyzing the associated Poincarduced by® can be conveniently described in terms of the
maps, ®, or through direct reference to two-dimensional elongations\{"(x). The elongation\{"(x) is the stretching
maps which can be regarded as explicit Poinsaretions of experienced aftem iterations at the pointx along the
some continuous-time flow. We shall also assumedhand  asymptotic unstable directiorisangent to the unstable mani-
its inverse are both continuous and differentiable, and thufold), i.e.,
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201
where || || indicates vector norm. The definition of elon- In L™
gation is similar to that of stretching(™(x), defined as 15}
AM(x)=]|®"™ (x) 1(0)||/|[I(0)||, where I(0) is an arbi-
trarily oriented initial vectof4]. However, while the elonga- 10 -
tion )\g‘) is strictly speaking a field, depending on space
and timen, the stretching.("(x) also depends on the orien- 51 o
tation of the initial vector, and is therefore not uniquely o
specified byx and by the number of iteratioms Despite this 0 ° ; . . .
conceptual difference, the scaling properties of stretchings 0 2 4 6 8 10
and elongations are the same because arbitrarily oriented n

vectors converge exponentially towards the asymptotic field rig. 1. comparison of ") (dotted lines and the natural

of unstable directions spanned by the figll(x)}. For this  |ogarithm of the intermaterial contact lengttiR (solid lineg vs n

reason, we shall henceforth use elongations and stretchingsr an arbitrary initial filamenty, lying within the chaotic regio,

as synonymous terms in the analysis of statistical propertiesor two different dynamical systeméa),(b) Sine flow,T=0.6; (c),
Theelongation exponent &x) can be defined as the natu- (d) standard mapT=20. Lines(a) and(b) [and analogously lines

ral logarithm of the elongatiora,(x) =In[A{(x)]. The defi-  (c) and(d)] have the same slope.

nition of elongation given by Eq4) is particularly useful in

theoretical analysis. It follows in fact from the recursive re- (n_ 11dx,(p) q
lation between invariant unstable subspa€§, Eqg. (3), L™= dp P
that then-step elongation exponeat,(x) can be expressed
as the summation of the one-step elongation expors(itg 1) |9®"(x) dXo(p)
e tra - 13 = dp. (®)
along a particle trajectory starting from[11-13, i.e., 0 x| . dp
— 70
n—-1
a.(x)= a,(x(X), X (X)=DI(x). 5 The quantity appearing within the integral in E§) is pro-
() jZO 1(400), - X 0=21(x) ® portional to the local stretching™ (xo(p)) aftern iterations,

) . - evaluated aky(p). The intermaterial contact lengti™ can
Equation(5) shows that the stretching dynamics is strictly therefore be expressed as

a multiplicative process once expressed with respect to the

invariant basis{e}(x)}. It also gives a convenient way to m_ [t o ) )
estimatea,(x) [and analogously the finite-time Liapunov ex- = o AP(x(p) dp=(A >70_<)‘e >70’ ©)
ponent defined ak(x;n)=a,(x)/n] numerically as the su-

perposition of the one-step elongation exponents. where( >,/O indicates that the average is performed oygr

Let us usg ) to denote the ensemble average with respecBy taking the average of Eq9) over all the possible one-
to the uniform ergodic invariant measure within the chaoticyimensional curves embedded in the chaotic region, it fol-

regionC.. As a consequence of E(p), it follows that lows that
(an)=(IM\"y=nA=(In\"), (6) LW~ (10)
o-g(n)=<(an— nA)?) i.e., the scaling properties of the intermaterial contact length
neln-1 can be predicted by the scaling of the first-order moment

M (1;n) of the elongation field, averaged with respect to the
ergodic invariant measure af .

The numerical validation of this result is shown in Fig. 1,
=((IN\ ™ —(In\(M))?), (7)  which illustrates the comparison of the scaling behavior of
In(\"") (dotted lineg and IL™ vs n (continuous linesfor an
arbitrary initial filamenty, and for two different dynamical
systems on the torus: the sine-flow mdd]

= ]EO go ([ay(x;(x))— Al[a(x(x))— AT)

whereA is the Liapunov exponent.

Ill. RATE OF GROWTH OF INTERMATERIAL
CONTACT LENGTH Xnt1=Xp+ Ty, +Tf(x,) mod 1,

We shall now analyze the evolution of the intermaterial
contact length.(" aftern iterations by considering an initial
regular curvey, of lengthL(%), parametrized with respect to with f(x)=sin(2mx), and the Chirikov standard m4p5]

a real parametep, i.e., yo={X=(X,y)|x=Xq(p),p[0,1]}.

After n iterations, y, evolves into a new segmenyg, Xn+1=Xp— (T/27)sin(27y,,) mod 1,
={x,(p)=P"(xo(p)), pe[0,1]}, the length of which is

given by LM, Yn+1=Yn+Xns1 mod1, (12)

Ynr1=Yn+Tf(x,) mod 1, (11
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FIG. 2. Short-time behavior ofln\{") (dotted line$ and of 100
In(\") (dots for several chaotic dynamical systems. The averages

were performed over an ergodic trajectory Nf, tracer points 0 4'0 8'0 150 11

within the chaotic regiorC;. (a),(b) Duffing oscillator, e =2.35, n 60 200
o=1 (Np=5X 10°); (c),(d) flow between eccentric cylinders,

Oou= (57/2), (Np:105); (e),(f) standard mapT =30 (Np=107); FIG. 3. InM(m;n) vs n for two different dynamical systemé&)
(9),(h) sine flow,T=2.0 (Np=107). The solid lines show the ex- m=1; (b) m=2; (c) m=3. The dotted lines show the short-time
ponential behavior A\")=expn6), Eq. (13). The dotted lines exponential behaviok (m;n)=exné(m)], Eq.(15). (a) Sine flow

show the exponential behavior faN\{)=nA. (T=0.5); (b) standard mapT=6.9115).

for a value of T>T,=0.97, whereT,, is the characteristic X=Yy,

value of the parameter, corresponding to the breakup of the

last Kolmogorov-Arnold-MosefKAM) torus for the stan- y:X_X3+8 cog wt), (14)

dard map(16].

An important numerical implication of Eq10) is the  anq the flow between two eccentric corotating cylindéis
following. The direct estimate df ™ from its definition as  The |atter system is a typical, physically realizable chaotic
the length of an evolved curvg, aftern iterations, starting  fiow extensively used in laboratory and numerical experi-
from vy,, requires an iterative interpolation along the initial ments on chaotic mixingsee[4] for a review. In this sys-
filamenty, in order to preserve its continuif]. As aresult,  tem, the two cylinders rotate in a discontinuous time-periodic
the analysis is limited by computer resources, both in tim&ashion in order to generate a chaotic flq@8]. Under
and in memory, to low values of=8—12. The estimate of creeping-flow conditions, a closed-form expression for the
the scaling ofL(" as the average @i ") along an ergodic stream function is availablg9]. The geometry of the appa-
trajectory, Eq.(10), solves many numerical problems by ratus is characterized by two parameters:r,/r o, (the ra-
making it possible to reach values ofof the order ofn tio of the radius of the inner cylinder to that of the outand
=200-300, which it would otherwise have been impossiblesc=e/r ,, (the dimensionless eccentricitgyc=e/r 5, given
to investigate starting from the original definition, and to by the distance between the centers of the two cylinders di-
obtain accurate results in a reasonable span of computgided by the radius of the outer cylinder. The flow protocol
time. is parametrized by the rotation of the outer cylindgy; and

As several authors have already pointed pliB], the by the ratioQ) of the rotation angle of the inner cylinder to
scaling behavior oL(™, or equivalently of(A{"), can be that of the outer cylinder. The values- 1/3, ec=3/10, and
approximated for small or intermediate valuesxdfy means (=3 are used here.

of an exponential law Let us now consider the higher-order moments of the
stretching hierarchi (m;n). Such moments seem to exhibit
LMW~ (\ My~ gnt (13 @ short- or intermediate-time exponential scaling with

M(m:n)= Amymy ] , =1,23...
where 6 is an exponent definitely greater than the Li- (mim = (O =exdnaml, - m ; (15

apunov exponent of the system. To give a numerical ex-

ample, Fig. 2 shows the short-time behavior of Mll)), its  characterized by an exponefitm), always greater than the
linear fitting In(()\g‘)))~n0 and the comparison with the linear asymptotic exponentmA. By definition, for m=1,
scaling of(ln)\g‘)>=nA controlled by the Liapunov exponent 6(1)= 6 introduced in Eq(13). Figure 3 shows the behavior
A for several dynamical systems, such as the sine-flow Egpf InM(m;n) vs n for m=1,2,3 for the sine flow T=0.5)
(11), the standard map E@12), the Duffing oscillatof17] and for the standard maf €6.9115) and its short-time lin-
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ear fitting INVIi(m;n)~n@(m). It can be observed that the ex- 10°
ponential behavior expressed by E5) holds over a sig-
nificant range of, but asn increases beyond a certain value
(characteristic for each system and depending upon the order
m), the momentdvl (m;n) start to deviate significantly from

the initial scaling and move slowly towards the asymptotic
behavior expressed by expmA+o(n)]}, as predicted by the
Oseledec theoreil0]. Moreover, the larger the order, the
smaller then range of validity of Eq.(15) becomes. Al-
though Eq.(15) does not hold asymptotically, the rangerof

for which it may be assumed to be valid, and the range of
values attained b1 (m;n) (hundreds of decadgare indeed
significantly large. Furthermore, the short- or intermediate-
time scaling is of specific relevance in many fluid-mixing
phenomena which involve transient processes.

It should be observed that we have so far used the term L . . ) . . P
short- or intermediate-time scales in a fairly qualitative way, 107 7 -8 —4 0 4
practically as the opposite of asymptotic long-term behavior. a
A quantitative estima_te Of. the “”.‘e sc_ales up to which Eqgs. FIG. 4.11(«) vs «a for different values oh for the standard map
(13 a_nd (15) are yalld will be given in Sec. VI once an atT=6.9115. The arrow shows the direction of increasing values of
ana!yt'cal expression has been derived for the temporal b%’= 150,175,200,225. The dotted vertical line shows the value of the
havior M(m;n). m

By anticipating a result that will be extensively discussedW
below (Sec. V), Eg. (15) can be viewed as the manifestation
of an important statistical feature characterizing all the mix-sidered by Ott and Antonsen in the case of the incompress-
ing systems analyzed here: regardless of the functional forrble generalized 2D Baker transformatip8], and although
of the probability density function for stretching exponents,derived in the case of a noncontinuous map, this has since
its varianceag(n) is a monotonically increasing function of been taken as the general model for the invariant rescaling of
n diverging to infinity (see Sec. IV B In actual fact, the stretching distributions in chaotic dynamical systems in-
only case for which((A{")™~expfimA) at short- or duced by the multiplicative nature of the stretching process.
intermediate-time scales is given by the familykofdiffeo- All the invariant rescalings so far proposed fail for the low
morphisms on the torus, which are topologically conjugatestretching tail(i.e., for a,<nA, i.e., for h<A) [12,27,
with the linear toral automorphisf20]. These systems are Which is strongly affected by the stickiness of quasiperiodic
globally hyperbolic and are characterized by a uniform scalislands and cantori surrounding the chaotic region.

()

10—1 -

1072 F

107 F

107 F

odea. The simulations were performed over an ergodic trajectory
ithin the chaotic region I‘(Jp=107 data points

ing exponent(coinciding with the Liapunov exponentFor A globally invariant rescaling for the probability density
such systemsy,(n)= o +0(n), and the variance therefore function for the elongatioristretching exponentsP(a,;n)
saturates towards a constant vatye=0. has recently been proposef®] in the case of two-
dimensional area-preserving chaotic maps:
IV. STATISTICAL PROPERTIES 1 a,—nA
OF THE ELONGATION FIELD P(a,;n)= ) (16)
o,(n) o,(n)

We have shown in Sec. lll that the intermaterial contact . . . . . .
length L(™ can be related to the temporal evolution of the l1(a) being an invariant probability density function of the

stretching field, averaged with respect to the ergodic invarifescaled variable:=(a,—nA)/o,(n), andoy(n) the square

ant measure, Eq10). This makes it possible to approach the _root qf the vari.ance of t_he elongation exponents_,(E)q.The_
study of the rate of growth df(™ analytically by making use nvarant functionlI(«) is a standardized probability density
of the statistical properties characterizing the eIongatioJunCt'o.n POSSESSINg z€ro mean ‘f.’md unit variance. To give a
field. The main statistical features Dﬁ“) which will be used numerical validation of Eq(16), Fig. 4 shows the behavior

. . . ... of the invariant functiolI(«) for a typical dynamical sys-
to obtain an analytic expression fé¢m) are analyzed in this 4 . . .
section tem (standard map Numerical simulations confirm that

IT(«) is globally invariant, i.e., the rescaling relation ex-

pressed by Eq(16) holds also for negative values af cor-
A. Globally invariant rescaling responding to the low-stretching region. The influence of
of the elongation exponent spectra quasiperiodic islands, elliptic points, and cantori, around

The analysis of the invariant statistical properties of chaWwhich stretching is particularly low, shows itself as a hump
otic dynamical systemf21-24 and in particular of short- for negative values o& (see Fig. 4 This hump moves to-
time Liapunov exponentSLE) has been a subject of intense Wards more negativer and lower probability values as
investigation in recent yeaf&5]. Some invariant rescalings increases, and progressively becomes smoother until it col-
for SLE spectra have been proposed, most of them derivintppses into a single enveloping cur@.
from the original exponential rescaling suggested by Grass- We shall usex to denote the mode at, i.e., the value
bergeret al. [26]. A similar exponential rescaling was con- corresponding to the maximum ofl(«), maxII(«)
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: FIG. 6. o, vs n for the sine flow for several values &t (a)
T=0.6;(b) T=0.8;(c) T=1.0.

107 1 2 3 4
o— whereC is a positive constant. Indeed, the results shown in
Fig. 6 (and the analysis of many other dynamical systems
FIG. 5. [I(a) vs (a— a)>0. Comparison of the theoretical ex- such as the standard map and the Duffing oscillator, not re-
pression Eq.(17) with simulation results(a) Standard mapT ported in the figuresuggest that the exponentequals the
=6.9115; (b) sine flow, T=0.6; (c) Duffing oscillator,e=2.35,  asymptotic exponent characterizing the scalingog{n).
0=1.0. The existence of a constant,,, (which is a conjecture
backed up solely by numerical resyltill be further used in
=H(E), which is also the local maximum dfi(a). By  order to derive an upper bound for the rangenofvithin
enforcing Eq.(16) and by making use of a slight modifica- Which the exponential scalings Eq4.3) and (15) hold (see
tion of the exponential rescaling proposed by Grassbergebec. V). Itis, however, important to stress that no claim is
et al. [26], it is shown in[9] that for «=a the functional made as regards the general validity of this conjecture. It is

form of II attains the general expression simply asserted that the existence of a constagt, has
(@) g P been observed and checked accurately for the dynamical sys-
. a— o tems under investigation.
H(a)zH(a)exr{—clgl( CA)
2

, a=a (17
B. Correlation properties and scaling of o-,(n)
whe_recl andc, are two constants and the functign® is In Sec. IV A we have shown that the functional form of
the inverse function of(n) defined by the high-stretching tail ofI(a) (for a>a) depends solely
on the time behavior of the variance of the elongation expo-
{(n)=nloy(n). (18) v g

nents, through the functiafi *(x). In this section we outline
the main scaling properties oﬁ(n) which will be useful for
the purposes of this article.

Starting from Eq.(5), and after some algebra, it follows

Since ¢(n) is a monotonically increasing function of di-
verging to infinity asn— o, it admits a global inverse func-
tion £~ . Figure 5 shows the In-normal plot of the positive

tail of I1(«) vs a— a numerically estimated for several dy-
namical systems, and its excellent agreement with the theo- o2(n)=n((a?)—(a;)?)
retical expression Eq17).
Equation(17) indicates that the functional form &f(«), n-1
for a>«, is controlled by the fluctuational-correlation prop- X Zgo Caa,(K) =1~ ﬁhzo hCaa,(h) |, (20
erties of the elongation field, expressed by the temporal be-
havior of the variance of the elongation exponents. The imywhere
plications of this property are extensively addressed in Sec.

n-1

VI of this article. _ , _
Another interesting feature of the invariant rescaling Eq.  Caq (h)= (21X 1)) <2a1>][al(le(x)) <a1>])’
(16) is the fact that numerical simulations indicate the exis- (ap)—(ay)
tence of a finite and constant upper boung,, of the sup-
port of IT(«) such thatll(a)=0 for a> aga. AS an ex- h=0,1,... (21)

ample, Fig. 6 shows the behavior af?,, vs n for the sine-

flow map (for several values of the paramef®, aggx being is the normalizec[02a1(0)=1] autocorrelation function of

the value ofa . associated with thath-order approxima- the one-step elongation exponents averaged over an ergodic
tion of TI(a)=04a(n)P(an:N)|a =na+aeym- IN point of trajectory. _ _ o
fact, it is easy to show by enforcing the Oseledec theorem wAccordmg o -E.q.(20), i szal(h) 1S summable[.Le., i
[10] that if II(«) is a smooth function ofy, then 21=0Caq,(h) is finite], thenog(n) scales asymptotically as
- o2(n)=a2n, since the term within square brackets in Eq.
amaSCn'log(n), Osv<1 (19 (20) approaches a constant value. The summability of the
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autocorrelation functi0|€231(n) has been proved by Ruelle

[28,29 and Sina{30] (see alsg31]) for hyperbolic systems,

for which the autocorrelation function of any smooth func-

tion exhibits an asymptotic exponential decay. As exten-
sively discussed if11], two-dimensional chaotic diffeomor-
phisms admit a hyperbolic structure within the chaotic region a(n)

C.. Itis therefore possible to enforce the Sinai-Ruelle theo- 101

rem on the autocorrelation function of the one-step elonga-

tions, and to conclude that the linear asymptotic scaling of

o2(n) with n is a generic feature of two-dimensional chaotic 107~ , - ¥ , ]

diffeomorphisms. 10° 10! 10? 10° 10 10°
On the other hand, several authpg®,12 have observed n

numerically that at intermediate-time scales<{n., where
n. is a crossover tirr)e(rg(n) exhibits an anomalous power-
law behavioro2(n)=o?n? with 0<B<1. The crossover
time n; can be very large, depending on the correlation prop-
erties(stickines$ within the boundary layer contained @
surrounding islands of quasiperiodicity and canf88]. As a a.{n)
consequence of this observation, some authors argue that tt
anomalous scaling characterized by an expongmtl/2
would be a persistent feature of some dynamical system:
[32,12. For the purpose of this artic[gvhich focuses on the 10°
short- and intermediate-time behavior of the moment hierar- 100
chy M(m;n)], the asymptotic behavior @fg(n) is of limited n
interest. However, for the sake of completeness, it is impor-
tant to point out that recent numerical analy§84] has
clearly shown that for two-dimensional chaotic diffeomor-
phisms in which an anomalous scaling behaviwg;(fn) has
been observed with an expone8it+ 1/2 (such as the stan-
dard map for =T<5 [32] and T=6.9115[12]), this phe-
nomenon is of transient nature, andreisicreases the scaling
of oi(n) converges towards the linear scaling.

To give an example of the typical crossover behavior of

102

101

102 T LR | T T T LR |

o4(n)

o,(n), Figs. 1a)-7(c) show the case of the sine flow for
three different values of the paramefer Depending onT,
the crossover time, can vary fromn.=21000 (T=0.5) to
n.=100 (T=0.6). ForT=0.8, asymptotic behavior sets in
right from the first iterations and no crossover occurs.

This crossover behavior @f,(n) had a direct counterpart
in the behavior for(n), Eq. (18), and consequently in its
inverse functiory " 1(x) entering into Eq(17), which can be
approximated by

(o x)YI=B for x<{(ne)
for x>¢(ny).

-1 —
7 (002 (2
Where no crossover occurs, we define conventionally
=0y and8=1/2.

By substituting Eq.(22) into Eq. (17), it is possible to
obtain the functional dependence dfla) on «a for a>«a.
Equations(16), (17), and(22) are in fact the starting point

0 1 I 1
10100 101 102 108
n
FIG. 7. Ln-In plot of o4(n) vs n for the sine flow for several
values ofT. (a) T=0.5; (b) T=0.6; (c) T=0.8. Line(a) shows the
short- or intermediate-time behavieg(n) ~n”. Line (b) shows the
asymptotic behavioo,(n) ~n'2 The dotted vertical line indicates

the crossover valua, .

the elongationgstretchings This topic is developed in this
section. LetF(\{" ;n) be the probability density function of
the elongation field (") associated with its ergodic average.
The relation betwee (A\{"V;n) andP(a,;n) follows from

a simple probability balance and reads as

P(InA{" ;
F()\g‘);n)ZM (23

A

for the analysis of the scaling behavior of the moments of the
stretching field. Needless to say, the short-time behavior ofrom the definition of themth order momentM(m;n)
o4(n) is particularly important in the analysis of the short- :(()\gﬂ)m of )\g“), it readily follows that

or intermediate-time scaling dfl (m;n).

V. SHORT-TIME SCALING OF THE MOMENT
HIERARCHY M(m:n)

By applying the results discussed in Sec. 1V, it is possible
to obtain an analytic expression for the moment hierarchy of

M= [ “O T o
0

=fo AMMIPAN;mdA Y. (29)
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The functional form ofP(a, ;n), Eq.(16), can be substituted

into Eqg. (24), and by making use of a change of integration

variable a= (IN\{"—nA)/a(n) it follows that
M (m;n):e”mAf e ("] (a)da. (25)

Since a,(n) is by definition positive, Eq(25) can be ma-
nipulated to yield

M(m;n)
nmA -

+f eamlra(n)H(a)da:C+I(m|n)!
0
(26)

e

whereC= 9 _e"™a("[(a)da e (0,1) is a positive quantity
always bounded by 1. Equatid@6) follows from the appli-

a*=a+Q(mnt A, (31
where the functiorQ(m) is given by

m(1-B)o, )“‘”’B
cy(oilcy) P

Q(m)=<

1— U1-8)\ (1-B)IB
:(m( ,[::)Cz ) 1_Km 32
1

g T
By substituting Eq(32) into Eqg. (29), it follows that
L(m;n)=TI(a)exg nl'y(m)+nfT,(m)], (33

where the two function$';(m) andI',(m) are defined by

cation of the mean-value theorem to the integral appearing in  I';(m)=Q(m)o;Bm=K(m)Sm, (m)=aom.

Eq. (25 restricted to the interval {,0). The invariant
function IT(«) is a smooth, unimodular function far=0,
and the integran@*™a(MII(«) attains a local maximum for

ae[0,,°). We can therefore apply the method of steepes

descenf35] to the integral appearing in E¢R6). This gives
the following estimate fof (m;n):

[(m;n)=e* MoaM[](a*), (27

where a*=a*(n,m)>0 is the local maximum of
exfg amao,(n)JII(«), the solution of the equation

(@)

Il(*)Mag(n) + —

|a=a*:0' (28)

Since expamo,(n)] is a monotonically increasing function
of n for eachm, it is easy to see that the unimodularity of
IT(«) for positive @ implies thata* is always greater than
the modea of II(a), a* >a for all n, m integers. This
condition ensures that the functional expressionligey) in
the range &,«), obtained by merging Eqg17) and (22),
can be properly applied to obtain

a* —a

'(m?n)zﬂ(g)e“*m”am)exr{ —015_1( j}
C2

(29

(34

The constanC entering into Eq(26) is bounded by 1 and
an be overlooked as compared to the exponential term
(m;n). By collecting together Eqg33) and (34) and sub-

stituting them into Eq(26), we thus arrive at the estimate for

M(m;n) given by

M (m;n)=II(a)exp{n[mA +T';(m)]+nfT ,(m)}.
(35

Let us now analyze the implications of E&5) in greater
depth. The first and most important result is that the
mth-order momentsvi(m;n) for m=1,2, ... scale withn
faster than exp(mA), since bothl’;(m) andT',(m) are al-
ways greater than or equal to zero. However, apart from the
case wherex=0, which implies by Eq(34) I',(m)=0, the
short-time behavior oM (m;n) is not strictly exponential,
due to the presence of the stretched exponential contribution
exgnI',(m)]. This means that in the general case, the expo-
nential expressions, EqEL3) and (15), should be regarded
simply as a good, and sometimes very good, approximation
of the short-time scaling. The caae>0 often occurs in the
presence of significantly asymmetré(«), as can be ob-
served from Fig. 4. In the case>0, sincel’,(m) is a lin-
early increasing function of; [while I';(m) does not de-
pend explicitly ong;], the greater the value af; (i.e., the

where a* can be expressed in closed form in terms of thebroader the distribution of elongation exponénthe faster

two functions and ¢ *:

nm ¢, dZ ()

§(n)_cz dx |x=(a*—E)/c2:0-

(30

Together with the expression fdi(n) and ¢~ %(x), Eq.
(22), Egs.(29) and(30) yield an analytic expression for the

the short-time growth of the intermaterial lendtd” and of
the higher-order moments! (m,n), compared to limit pre-
dicted by the Liapunov exponent.

A particular case is represented by the familyodiffeo-
morphisms on the torus. For these systems, as already dis-
cussed in Sec. lllg,(n)=o0k+0(n)=0 is definitely a con-
stant and all the momentgl(m;n) follow the exponential

mth-order moment of the elongation field depending exclu-homogeneous scaling induced by the Liapunov exponent,

sively on the functiorf(n), its inverse, and the two constants
¢, and ¢, characterizing the properties ®f(«) for each
dynamical system. As a consequence of (), the scaling
behavior ofM(m;n) can be directly inferred from the scal-
ing properties of ~1(x). As we are interested in the short- or

M (m;n)~exphmA). This result follows directly from Egs.
(25) and(26) since the termi(m;n) does not depend explic-
itly on the timen.

From the observations discussed above, it follows that the
short-time deviation from the exponential behavior

intermediate-time behavior of the moment hierarchyexpfimA) can be regarded as a measure of the dynamic het-

M(m;n), we can enforce Eq22) for the functionZ ~*(x) at
intermediate-time scalenn.) to obtain

erogeneity of the elongation field as it is directly related to
the properties of the variance?(n). Beigie et al. [1] at-
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tribute this deviation, in the caga=1, to the non-Gaussian 200
nature of the stretching distribution. Although it is certainly 1, ps
true that the non-Gaussian behaviorlbf«) influences the

scaling of the moment hierarchyl(m;n), the conclusion
envisaged if1] is not of general validity. Indeed, also in the 150
case of a Gaussial(«), the length of a generic material
line can grow at short times with an exponent definitely
larger thanA. To check this assertion, let us consider a
square-exponential behavior fof (a)=1I(a)exp(—ka?)
(coinciding with a Gaussian shape fkre=1/2). This case
implies =0, B=1/2, andk=c,/(c,0;)2. By substituting

(m;n)

100

these values into Ed35) it follows that 50
o?m?
M(m;n)~exp n| mA + it (36)
0 & I ! 1 I ) I
. L . . 0 20 40 60 80 100 120 14
A short-time deviation from the Liapunov scaling can there- n 0

fore occur also in the strictly Gaussian cage=(/2) since . _
o, is nonzero. As mentioned above, the main factor affecting F!G: 8. I'M(min) vs n (dots for the sine flow T=0.5) com-

deviation from the Liapunov scaling would appear to be the‘iazr?‘zc‘)"’ir:‘_tge Tﬂr:iocrjittitcei: l?:g;e;s;ot“hfiz di(g)ior::bl;s(:; ?n Eq
heterogeneity in the distribution of th retching exponents_<’ e :
eterogeneity in the distribution of the stretching expone t?35), with the stretched exponent contribution overlookee.,

(i.e., a nonzero value of;), rather than the non-Gaussian I',(m)=0] for m=1 andm=2
feature of the associated probability density function. 2 '

results forM(1;n), M(2;n), andM(3;n) for the sine flow
(T=0.5) and the theoretical prediction E5). It is impor-
One important issue remaining after the analysis develtant to point out that all the parametess, 8 andc,, ¢, and
oped in Sec. V is the definition of the range of temporalll(«), entering into Eq(35) have been independently ob-
validity of Eq. (35). This topic is analyzed in this section, tained, respectively, from the scaling @f(n) and from the
which also compares E@35) with the results of numerical interpolation of [1(«) with the theoretical expression Egs.
simulations. (17) and (22). In this case,ay,=2.0 and then range of
The explicit expression of* as a function oim andn,  applicability of Eg.(35) is significantly large:n* (m=1)
Eqg. (31), enables us to derive some general properties as-180,n* (m=2)=60, andn* (m=3)=235.
regards then range of applicability of Eq(35) and the quan- The case of the sine flow faF=0.5 is particularly inter-
titative meaning of the short or intermediate scaling foresting from the point of view of the scaling, since the func-
M(m;n). The steepest-descent approximation of the integrafion 11(«) exhibits a value o which is significantly greater

I(n,m) Eq. (27) makes sense as long as the local maximu —
a* defined in Eq(31) is smaller than the finite upper boundm[han zero, namelyy=0.34, and the factol',(m) related to
the stretched exponential contribution is of the same order of

cO:[omr?a.iti-(r)?le \:a<lld|ty ofSIiEr?é((fll 'z;hzﬁgrgxmﬁgﬁd gx tt?]?a magnitude as the factdr,(m) of the strictly exponential
&= Fmax- a” dep phicitly scaling. In this case, the stretched exponential term

time n, this condition can be recast into an equivalent con- 5 S - "
dition for the time range up to which E¢85) holds, i.c., exgn”T',(m)] makes a significant contribution to the initial

scaling. This is made evident in Fig. 8, where the dotted lines
o YR show the functional behavior of E¢35), with the stretched
n<n*= ( o .
Q(m)

VI. COMPARISON WITH NUMERICAL RESULTS

(37) exponential term fictitiously set equal to zefice., I';(m)
=0].

Although Eq.(35) does not predict a strictly exponential
*
The valuen® can be taken not only as the upper bound forbehavior for((\{M)™), an exponential fitting of numerical

the applicability of the steepest-descent metfiasl, for Eq. : L :
(35)], but also as a quantitative definition of the concept onata furnishes a QOOd apprQX|mat|on of the short-time behav-
short- or intermediate-time scaling. ior, as already discussed in Sec. Il. It is reasonable to ap-

Since f<1, and Q(m) is a monotonically increasing proximate the scaling d1(m;n) with an exponential behav-

function of m, the boundn* is a monotonically decreasing lor exp[ntapg)]% n Wh'Crf'f ept(m) IS a’?’t efierz]ctl\ée f_sq?hng f
function of the ordem. The range of applicability of Eq. exponent. As Tor any efiective quantity, the detinition o

(35 and the concept of short- or intermediate-time scalingap(m) is subject to a certain degree of arbitrariness. We

therefore depend om, and their validity is restricted in prac- ?he;”:r?igp(ori?tr? S( r%e_\;ﬁl?ri)% t:feitge:;vnatgl i)fo;w:irgg)biﬁ:
tice to the lower-order moments=1,2,3). This result is in i d% E F’3 N 9 PP y
agreement with the numerical results as can be observe%e ined by Ea(37). i.e.
from the comparison of the short-time scaling of the three
lower-order moments shown in Fig. 3. dinM(m:;n)

Let us now compare E¢35) with numerical simulations. Op(m) = —dan
Figure 8 shows the excellent agreement between numerical n=np(m)
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FIG. 9. InM(2;n) vs n for several values of (dotg compared
with the exponential behavia¥i (1;n)~expnd,) (lines) with 6,
=6,(1) given by Eq(37). (a) Sine flow,T=0.6,0.8,1.0,1.2,2.4b)
Standard mapl =6.9115,10,20,30,50.

=mA+Ty(m)+T(m)Bng~*. (39
This criterion for#,(m) gives good scaling predictions, i.e.,
exp{[mA +T';(m)]n+Ty(m)nf}=exg né,(m)]

for n<n*. (39
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FIG. 10. 6 vs 6,= 6,(1) given by Eq.(37) for several dynami-
cal systems and several sets of parame@rsDuffing oscillator,
w=1.0, £=0.75,2.35;<: flow between eccentric cylinderd,
=2,57/2; ¢ : standard mapT=6.9115,8,10,20,30,50: sine
flow, T=0.5,0.6,0.8,1.0,1.2.1.4,2.0.

We therefore conclude that the theoretical analysis based
on Eq.(35) is fully predictive and yields accurate values for
the short- or intermediate-time scaling of the intermaterial
contact lengthL™ and of the entire moment hierarchy
M(m;n).

VIl. ASYMPTOTIC SCALING OF M(m;n)

As a final issue, let us consider the asymptotic scaling of
M(m;n) for differentiable dynamical systems in order to
highlight the influence of the varianee,(n).

As discussed in the Introduction, the application of the
Oseledec theorem to diffeomorphisms implies that

1
IimHInM(m;n)zmA,

n—o

(40

i.e., the dominant contribution to the asymptotic scaling of
the stretching hierarchi (m;n) is made by the Liapunov
factor expmA). This result would suggest that for very
long time, independently of the initial scaling, the asymptotic

To give a numerical example, Fig. 9 shows the good level oP€havior of M(m;n) is exclusively controlled by the Li-
agreement between numerical simulations and the effectiv8PUnov exponent, and fortiori, the intermaterial contact
exponential approximation based @j(1), obtained theo- length L™ would definitely grow as exp().

retically from Egs.(35) and (38), for the sine flow and the This conclusion is not in fact completely correct, and
standard map for different values of the parameters. In ordegPart from the dominant Liapunov scaling, there exists a
to summarize the extensive numerical analysis performedsecond-order but significant correction depending on the
Fig. 10 compares the exponefit= (1) obtained from the Variances3(n). Let us take Eq(25) as our starting point to
analysis of the ergodic averages of the elongation exponefighlight this additional effect. The support upon which
and the effective exponertk,= 6,(1) for several dynamical II(«) is defined admits, for each, an upper boundx{),
systems(Duffing oscillator and standard maand chaotic given by Eq.(19).

flows (sine flow and flow between two eccentric cylinders Sincell(«) is in general a smooth and continuous func-
The agreement is satisfactory and the maximum deviation iion of its argument, we can apply the mean-value theorem to
less than 5%. Eq. (25) to obtain
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o [ growth of the intermaterial contact length, which controls
M(m;n)=e" f maeeM7d ] (a) do transport and reactive phenomena in the fluid system.
o It has been shown that at short- or intermediate-time

- N scales, the hierarchi (m;n) is characterized by an en-
=]TemAn f maxgamoa(Nd o hanced exponential scaling, the effective exponent of which
- is greater thamA..
~ By making use of the invariant rescaling of the probabil-
me"™ ity distribution of th hi d |
_ patm moa(n) (41) ity distribution of the stretching exponents proposed recently
Ma,(n) ' in [9], we are able to derive the short-time scaling of

5 M(m;n), Eq. (35), and to determine the temporal range

wherell e (0,1‘[(;))_ e (1,n*), Eq. (37), for which this scaling occurs. Equation

By Eq.(19), aﬂ};pa(n)<Cn”, whereC is a constant and  (39) is a fully predictive relatipn for the short-time behayior
a positive exponent strictly less than 1. The conditical of M(m;n), as shown numerically for several characteristic
ensures that Eq40) is satisfied. On the other hand, E41) ~ Model systems, and for a broad range of parameters charac-
implies that the asymptotic scaling (m;n) is the result ~ t€rizing these systems. All the quantities appearing in Eq.
of two main contributions: the exponential Liapunov scaling(35 can be obtained independently from the analysis of the
and a stretched exponential contribution with an exponenyariance of the stretching exponent§(n) and from their

<1 Wh|Ch depends on—a(n)_ inVariant d|Str|bUt|OnH(Gf) ] )

In the particular case where(), is a constant indepen- ~ Our analysis of the short-time behavior, and also of the
dent of n, as numerically observed for several dynamicalloNg-time propertiesaddressed in Sec. Vilireveals that the
systems(see Fig. 6, Eq. (41) reduces to rate of growth of the intermaterial contact perimeter is af-

fected by the heterogeneity in the stretching dynamics ex-
M(m;n)~enmA+amaxmrram)Neann”zmoo, (42 pressed by the varianceg(n) of the stretching exponent

field. This phenomenon is not only interesting in itself, but
in which we use the asymptotic scaling @f(n) discussed may give rise in the future to some practical implications in

in Sec. IV B. the improvement of mixing performances in fluid-mixing
Two main conclusions can be drawn from E¢él) and  systems.
(42). The intermaterial contact lengti™ grows asymptoti- Another significant effect controlling the short- or

cally faster than exm(\) by a factor exp’mo,). More-  intermediate-time scaling d¥l (m;n) is related to the asym-
over, as regards the short- or intermediate-time scaling dignetry of the invariant distributiohl («), expressed qualita-

cussed in Sec. V, the asymptotic scalinghd{m;n), anda tively by its modea. For =0, which corresponds to a
fortiori of L(", depends on and is enhanced by the heterofairly symmetric case, the initial scaling is strictly exponen-
geneity of the stretching distribution, expressed quantitatial, and the exponené(m) is given bymA +I';(m). For
tively by the square root of the varianog(n). This resultis ;= \yhich corresponds to highly asymmetric distribution
by no means surprising in view of the fact that the high-q¢ ¢ stretching exponentsee, e.g., Fig. ¥ the initial scal-
stretching tail oflI(«) is entirely controlled by the behavior ing of M(m;n) is not strictly exponential, since a stretched

: -1
of oa(n) through the functiong and ™" exponential factor also appears, given by [@kp,(m)]. An

approximatgeffective exponential scaling can, however, be
VIll. CONCLUSIONS defined also in this case, as developed in Sec. VI,(&8).

This article develops a scaling theory for the hierarchy of
stretching moment® (m;n) in the case of two-dimensional
chaotic area-preserving diffeomorphic maps. The case This work was funded by a NSF grafterant No. CTS
=1 is particularly interesting as regards the applications t®4-14460 to F.J.M. and by an Italian MURST grant to A.A.
chaotic fluid mixing since it is directly related to the rate of and M.G.
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